Staff profile
Overview
https://apps.dur.ac.uk/biography/image/934
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Mathematical Sciences |
Research interests
- Machine Learning
- Uncertainty Quantification
- Forecast evaluation
- Nonlinear time series analysis
- Data Assimilation
- Weather and Climate modelling
- Energy System Optimisation
Publications
Conference Paper
- An Integrated Stacked Sparse Autoencoder and CNN-BLSTM Model for Ultra-Short-Term Wind Power Forecasting with Advanced Feature LearningLiu, J., Kazemtabrizi, B., Du, H., Matthews, P., & Sun, H. (2025). An Integrated Stacked Sparse Autoencoder and CNN-BLSTM Model for Ultra-Short-Term Wind Power Forecasting with Advanced Feature Learning. In IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society. IEEE. https://doi.org/10.1109/IECON55916.2024.10905784
Journal Article
- Double weighted k nearest neighbours for binary classification of high dimensional genomic dataAli, A., Khan, Z., Du, H., & Aldahmani, S. (2025). Double weighted k nearest neighbours for binary classification of high dimensional genomic data. Scientific Reports, 15(1), Article 12681. https://doi.org/10.1038/s41598-025-97505-2
- Calibration under Uncertainty Using Bayesian Emulation and History Matching: Methods and Illustration on a Building Energy ModelDomingo, D., Royapoor, M., Du, H., Boranian, A., Walker, S., & Goldstein, M. (2024). Calibration under Uncertainty Using Bayesian Emulation and History Matching: Methods and Illustration on a Building Energy Model. Energies, 17(16), Article 4014. https://doi.org/10.3390/en17164014
- Beyond Strictly Proper Scoring Rules: The Importance of Being LocalDu, H. (2021). Beyond Strictly Proper Scoring Rules: The Importance of Being Local. Weather and Forecasting, 36(2), 457-468. https://doi.org/10.1175/waf-d-19-0205.1
- Optimization via Statistical Emulation and Uncertainty Quantification: Hosting Capacity Analysis of Distribution NetworksDu, H., Sun, W., Goldstein, M., & Harrison, G. (2021). Optimization via Statistical Emulation and Uncertainty Quantification: Hosting Capacity Analysis of Distribution Networks. IEEE Access, 9, 118472-118483. https://doi.org/10.1109/access.2021.3105935
- Designing Multimodel Applications with Surrogate Forecast SystemsSmith, L. A., Du, H., & Higgins, S. (2020). Designing Multimodel Applications with Surrogate Forecast Systems. Monthly Weather Review, 148(6), 2233-2249. https://doi.org/10.1175/mwr-d-19-0061.1
- Carbon mitigation unit costs of building retrofits and the scope for carbon tax, a case studyM, R., Du, H., N, W., M, G., T, R., P, T., & S, W. (2019). Carbon mitigation unit costs of building retrofits and the scope for carbon tax, a case study. Energy and Buildings, 203. https://doi.org/10.1016/j.enbuild.2019.109415
- Multi-model cross-pollination in timeDu, H., & Smith, L. A. (2017). Multi-model cross-pollination in time. Physica D: Nonlinear Phenomena, 353-354, 31-38. https://doi.org/10.1016/j.physd.2017.06.001
- Rising Above Chaotic LikelihoodsDu, H., & Smith, L. A. (2017). Rising Above Chaotic Likelihoods. SIAM/ASA/Journal/on/Uncertainty/Quantification, 5(1), 246-258. https://doi.org/10.1137/140988784
- Towards improving the framework for probabilistic forecast evaluationSmith, L. A., Suckling, E. B., Thompson, E. L., Maynard, T., & Du, H. (2015). Towards improving the framework for probabilistic forecast evaluation. Climatic Change, 132(1), 31-45. https://doi.org/10.1007/s10584-015-1430-2
- Probabilistic skill in ensemble seasonal forecastsSmith, L. A., Du, H., Suckling, E. B., & Niehörster, F. (2015). Probabilistic skill in ensemble seasonal forecasts. Quarterly Journal of the Royal Meteorological Society, 141(689), 1085-1100. https://doi.org/10.1002/qj.2403
- Pseudo-Orbit Data Assimilation. Part I: The Perfect Model ScenarioDu, H., & Smith, L. A. (2014). Pseudo-Orbit Data Assimilation. Part I: The Perfect Model Scenario. Journal of the Atmospheric Sciences, 71(2), 469-482. https://doi.org/10.1175/jas-d-13-032.1
- Pseudo-Orbit Data Assimilation. Part II: Assimilation with Imperfect ModelsDu, H., & Smith, L. A. (2014). Pseudo-Orbit Data Assimilation. Part II: Assimilation with Imperfect Models. Journal of the Atmospheric Sciences, 71(2), 483-495. https://doi.org/10.1175/jas-d-13-033.1
- Laplace’s Demon and the Adventures of His ApprenticesFrigg, R., Bradley, S., Du, H., & Smith, L. A. (2014). Laplace’s Demon and the Adventures of His Apprentices. Philosophy of Science, 81(1), 31-59. https://doi.org/10.1086/674416
- Parameter estimation through ignoranceDu, H., & Smith, L. A. (2012). Parameter estimation through ignorance. Physical Review E, 86(1), Article 016213. https://doi.org/10.1103/physreve.86.016213
- Exploiting dynamical coherence: A geometric approach to parameter estimation in nonlinear modelsSmith, L. A., Cuéllar, M. C., Du, H., & Judd, K. (2010). Exploiting dynamical coherence: A geometric approach to parameter estimation in nonlinear models. Physics Letters A, 374(26), 2618-2623. https://doi.org/10.1016/j.physleta.2010.04.032
Supervision students
Tianlin Yang
1S